24 research outputs found

    Bringing Inputs to Shared Domains for 3D Interacting Hands Recovery in the Wild

    Full text link
    Despite recent achievements, existing 3D interacting hands recovery methods have shown results mainly on motion capture (MoCap) environments, not on in-the-wild (ITW) ones. This is because collecting 3D interacting hands data in the wild is extremely challenging, even for the 2D data. We present InterWild, which brings MoCap and ITW samples to shared domains for robust 3D interacting hands recovery in the wild with a limited amount of ITW 2D/3D interacting hands data. 3D interacting hands recovery consists of two sub-problems: 1) 3D recovery of each hand and 2) 3D relative translation recovery between two hands. For the first sub-problem, we bring MoCap and ITW samples to a shared 2D scale space. Although ITW datasets provide a limited amount of 2D/3D interacting hands, they contain large-scale 2D single hand data. Motivated by this, we use a single hand image as an input for the first sub-problem regardless of whether two hands are interacting. Hence, interacting hands of MoCap datasets are brought to the 2D scale space of single hands of ITW datasets. For the second sub-problem, we bring MoCap and ITW samples to a shared appearance-invariant space. Unlike the first sub-problem, 2D labels of ITW datasets are not helpful for the second sub-problem due to the 3D translation's ambiguity. Hence, instead of relying on ITW samples, we amplify the generalizability of MoCap samples by taking only a geometric feature without an image as an input for the second sub-problem. As the geometric feature is invariant to appearances, MoCap and ITW samples do not suffer from a huge appearance gap between the two datasets. The code is publicly available at https://github.com/facebookresearch/InterWild.Comment: Published at CVPR 202

    V2V-PoseNet: Voxel-to-Voxel Prediction Network for Accurate 3D Hand and Human Pose Estimation from a Single Depth Map

    Full text link
    Most of the existing deep learning-based methods for 3D hand and human pose estimation from a single depth map are based on a common framework that takes a 2D depth map and directly regresses the 3D coordinates of keypoints, such as hand or human body joints, via 2D convolutional neural networks (CNNs). The first weakness of this approach is the presence of perspective distortion in the 2D depth map. While the depth map is intrinsically 3D data, many previous methods treat depth maps as 2D images that can distort the shape of the actual object through projection from 3D to 2D space. This compels the network to perform perspective distortion-invariant estimation. The second weakness of the conventional approach is that directly regressing 3D coordinates from a 2D image is a highly non-linear mapping, which causes difficulty in the learning procedure. To overcome these weaknesses, we firstly cast the 3D hand and human pose estimation problem from a single depth map into a voxel-to-voxel prediction that uses a 3D voxelized grid and estimates the per-voxel likelihood for each keypoint. We design our model as a 3D CNN that provides accurate estimates while running in real-time. Our system outperforms previous methods in almost all publicly available 3D hand and human pose estimation datasets and placed first in the HANDS 2017 frame-based 3D hand pose estimation challenge. The code is available in https://github.com/mks0601/V2V-PoseNet_RELEASE.Comment: HANDS 2017 Challenge Frame-based 3D Hand Pose Estimation Winner (ICCV 2017), Published at CVPR 201
    corecore